Lesson 2 – Redox. Writing oxidation and reduction half equations for more complex oxidants and reductants.

Simple oxidants such as Ag⁺ are somewhat easy to write a balanced half equation for.

$$Ag^{+}(aq) + e \rightarrow Ag(s)$$

$$Sn^{4+}(aq) + 4e \rightarrow Sn(s)$$

Pb(s) \rightarrow Pb²⁺(aq) + 2e

Electrons always added to the most positive side

$$Cr_2O_7^{-2}/Cr^{3+}$$

To write a balanced half equation follow the steps

1. Balance for all elements other than O or H

$$Cr_2O_7^{-2} \rightarrow 2Cr^{3+}$$

2. balance for oxygen by adding water to the side with least number of oxygens

$$Cr_2O_7^{-2} \rightarrow 2Cr^{3+} + 7H_2O$$

3. balance for hydogens by adding H⁺(aq) to the side with least hydrogens

$$14H^{+}(aq) + Cr_2O_7^{-2} \rightarrow 2Cr^{3+} + 7H_2O$$

4. Balance for charge by adding electrons to the most positive side

6e +
$$14H^{+}(aq) + Cr_2O_7^{-2} \rightarrow 2Cr^{3+} + 7H_2O$$

1. Use the steps outlined above to give a balanced half equation, states not included, for the reaction of the the following conjugate pairs. Indicate if the reaction is an oxidation or a reduction.

Keep in mind: Reduction – electrons appear on the left Oxidation – electrons appear on the right

- a. MnO_4^-/Mn^{2+}
- b. BiO_4^{-3} / Bi^{3+}
- c. SO_3^{-2}/SO_4^{-2}
- d. NO_3^-/NO_2
- e. $C_2O_4^{-2}/CO_2$
- f. H_5IO_6/IO_3^-
- g. BrO_3^{-3}/Br^{-1}
- h. MnO_2 / Mn_2O_3
- i. HClO₄ / HCl
- j. P_4H_{10}/P_2O_5
- k. P_4 / PO_4^{-3}